Division of Electrical, Electronic and Information Engineering, Osaka University **Systems Analysis and Optimization Studies on Cooperative Games and Their**

In our laboratory, we are developing new mathematical methods for systems analysis on the basis of theories in optimization and decision making; mathematical programming, game theory, soft computing (fuzzy theory, support vector machine, chaos theory, and rough set theory), and knowledge information processing. Moreover, we apply them to some practical problems.

Research Themes

- Cooperative game theory and some applications
- Cooperative games with some types of uncertainties
- Multiobjective multiclass support vector machines
- Particle swarm optimization
- Data analysis using logical functions
- Cluster analysis based on graph theory

Multiclass Classification by Multiobjective Support Vector Machine

Using a training data set (red, blue, green), find a piecewise linear function (hyper planes) which partitions the data space into 3 classes.

Support vector machine: find a linear function which discriminates 2 classes by maximizing the unique geometric margin. How to approach to the **multiclass** (more than 2) case?

Maximize all geometric margins simultaneously

Solutions

Clients (a,b,c,d) can reduce the cost by constructing the network cooperatively.

How to share the total cost among the agents?

Propose reasonable cost allocation rule based on cooperative game theory

Data Analysis Based on Rough Set Theory

A data set of medical diagnosis Conditions: Temperature (T), Headache (H												
	Ρ	т	н	W	Ν	F	Decision	s (w : Flu	ı (F)	(IN)		
	1	high	yes	yes	no	yes		Contradiction (because these are the same under the conditions but				
	2	normal	no	no	no	no	Contra					
	3	normal	yes	yes	yes	yes	diagnosed differently)					
	4	high	no	no	no	no		Р	Т	н	w	F
	5	normal	no	yes	no	no		1	high	ves	ves	ves
	6	normal	no	yes	no	yes	$\square $	2	normal	no	no	no
The contradiction preserved without "N"								3	normal	yes	yes	yes
The necessary sets of conditions for								4	high	no	no	no
$\{T, W, N\}$ $\{H, W\}$								5	normal	no	yes	no
								6	normal	no	yes	yes
	1	mporta	nt set									

Attribute reduction based on inconsistency in the data set

Professor Tetsuzo Tanino tanino@eei.eng.osaka-u.ac.jp / Associate Professor Kaiji Tatsumi tatsumi@eei.eng.osaka-u.ac.jp / Assistant Professor Yoshifumi Kusunoki kusunoki@eei.eng.osaka-u.ac.jp / Web page http://sa.eei.eng.osaka-u.ac.jp/english/