Recent activities of the research unit for exploration of new materials toward innovative electrons devices (Ozaki IDER)

Norimasa OZAKI
Graduate School of Engineering, Osaka University, Japan

EDIS08, Osaka, Japan, 18 January 2008
Acknowledgment

1Graduate School of Engineering, Osaka University, Japan
2Lawrence Livermore National Laboratory, USA
3Graduate School of Environmental Studies, Nagoya University, Japan
4LULI, Ecole Polytechnique, France
5Institute of Laser Engineering, Osaka University, Japan
6School of Chemistry, University of St. Andrews, UK
7Shock Wave and Condensed Matter Research Center, Kumamoto University, Japan
8Laboratoire de Combustion et de Detonique, France
9National Institute for Material Science, Japan
10Graduate School of Science and Engineering, Tokyo Institute of Technology, Japan
11SPRING-8, Japan
12KYOKUGEN, Osaka University, Japan
13Commissariata l’Energie Atomique (CEA), France
What is the purpose of the unit?

- Creating novel materials applicable to innovative electronic devices not found in STP condition

<table>
<thead>
<tr>
<th></th>
<th>Gun</th>
<th>Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial scales</td>
<td>10 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>Time scales</td>
<td>1 µs</td>
<td>10 ns</td>
</tr>
<tr>
<td>Pressure</td>
<td>0.5 TPa</td>
<td>50 TPa</td>
</tr>
</tbody>
</table>
In order to investigate “Off-Hugoniot” states, new approaches are required.
Some new approaches are under development in Osaka University to access Off-Hugoniot material states

- Static and dynamic “hybrid” compression
- Reflecting shocks
- Isentropic compression
Laser shock experiments on the pre-compressed H$_2$O target have been performed at GEKKO/HIPER facility.
Wide range off-Hugoniot conditions are available for e.g., hydrogen using these techniques.

![Graph showing Shock Hugoniot, ReShock, Hybrid, Hybrid + ReShock, and Isentropic compression.]
Comparison of Hugoniots between cryogenic and pre-compressed H$_2$ targets

<table>
<thead>
<tr>
<th>Density [g/cc]</th>
<th>Pressure [Mbar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature [eV]</th>
<th>Pressure [Mbar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- **Standard (Cryo)**: 0.088 g/cc, 20 K (cryogenic liquid H$_2$)
- **0.7 GPa**:
 - 0.122 g/cc, 300 K (0.7 GPa pre-compress)
- **1.2 GPa**:
 - 0.142 g/cc, 300 K (1.2 GPa pre-compress)
Precompression pressures more than 1 GPa have been achieved using even thin flat diamond plates.
Laser shock experiments on the pre-compressed H₂O target have been performed at GEKKO/HIPER facility.
Few eV temperature, which is much lower than principle Hugoniot one, is measured
We have recovered shocklessly compressed silicon

Experimental investigations for Off-Hugoniot with high pressure but low temperature have been started using new techniques:

- Precompression pressures more than 1 GPa have been achieved using diamond anvil cell technique.
 - Laser-shock experiments were also performed at HIPER laser facility.
- Simultaneous measurements with rear VISAR/SOP and monochromatic x-ray diagnostics have been developed.
 - Shock reflection by sapphire anvil has been observed with VISARs.
 - New anvil materials have been investigated up to TPa pressures.
- Ramp wave generations have been confirmed.
 - Al sample is isentropically compressed up to ~ 20 GPa.
 - We are improving the planarity of laser irradiation pattern.

Conclusions