

Recent activities of the research unit for exploration of new materials toward innovative electrons devices (Ozaki IDER)

Norimasa OZAKI Graduate School of Engineering, Osaka University, Japan

EDIS08, Osaka, Japan, 18 January 2008

Acknowledgment

K. Miyanishi,¹ T. Kimura,¹ T. Endo,¹ R. Smith², T. Sano,¹ T. Terai,¹ T. Okuchi,³ M. Koenig,⁴ M. Tanabe,⁵ W. Nazarov,⁶ T. Mashimo,⁷ T. Kinoshita,¹ A. Benuzzi-Mounaix,⁴ T. deResseguier,⁸ S. Kawamura,¹ K. Kobayashi,⁹ G. Collins,² J. Eggert,² S. Fujioka,⁵ M. Ikoma,¹⁰ H. Nakamura,¹ Y. Sakawa,⁵ O. Sakata,¹¹ T. Sano,⁵ T. Sekine,⁹ K. Shibata,¹ K. Shigemori,⁵ K. Shimizu,¹² T. Vinci,¹³ R. Kodama¹

¹Graduate School of Engineering, Osaka University, Japan
²Lawrence Livermore National Laboratory, USA
³Graduate School of Environmental Studies, Nagoya University, Japan
⁴LULI, Ecole Polytechnique, France
⁵Institute of Laser Engineering, Osaka University, Japan
⁶School of Chemistry, University of St. Andrews, UK
⁷Shock Wave and Condensed Matter Research Center, Kumamoto University, Japan
⁸Laboratoire de Combustion et de Detonique, France
⁹National Institute for Material Science, Japan
¹⁰Graduate School of Science and Engineering, Tokyo Institute of Technology, Japan
¹²KYOKUGEN, Osaka University, Japan
¹³Commissariata l'Energie Atomique (CEA), France

What is the purpose of the unit?

• Creating novel materials applicable to innovative electronic devices not found in STP condition

In order to investigate "Off-Hugoniot" states, new approaches are required

Some new approaches are under development in Osaka University to access Off-Hugoniot material states

- Static and dynamic "hybrid" compression
- Reflecting shocks
- Isentropic compression

Laser shock experiments on the pre-compressed H₂O target have been performed at GEKKO/HIPER facility

Wide range off-Hugoniot conditions are available for e.g., hydrogen using these techniques

Pressure

Comparison of Hugoniots between cryogenic and pre-compressed H₂ targets

0.088 g/cc, 20 K (cryogenic liquid H2)
 0.122 g/cc, 300 K (0.7 GPa pre-compress)
 0.142 g/cc, 300 K (1.2 GPa pre-compress)

Precompression pressures more than 1 GPa have been achieved using even thin flat diamond plates

Laser shock experiments on the pre-compressed H₂O target have been performed at GEKKO/HIPER facility

Few eV temperature, which is much lower than principle Hugoniot one, is measured

We have recovered shocklessly compressed silicon

Voronin et al., Phys. Rev. B (2003).

Conclusions

Experimental investigations for Off-Hugoniot with high pressure but low temperature have been started using new techniques

- Precompression pressures more than 1 GPa have been achieved using diamond anvil cell technique.
 - Laser-shock experiments were also performed at HIPER laser facility.
- Simultaneous measurements with rear VISAR/SOP and monochromatic x-ray diagnostics have been developed.
 - Shock reflection by sapphire anvil has been observed with VISARs.
 - New anvil materials have been investigated up to TPa pressures.
- Ramp wave generations have been confirmed.
 - Al sample is isentropically compressed up to ~ 20 GPa.
 - We are improving the planarity of laser irradiation pattern.