IDER unit

“Advanced photonic devices for new-generation communication networks”

M. Fujimura
A. Maruta
M. Matsumoto
T. Higashino
Research Background

New-generation photonic network

Signal transmission various format various wavelength

urgent demand on versatile photonic devices and sub-systems
- transparent
- high speed
- secure
Research Background

Optical communication

- WDM
- TDM
- CDMA
- ROF

Network

Sub-system

- transmitter
- repeater
- format conv.

Device

- laser diode
- modulator
- detector
- wavelength conv.
Research Background

Optical communication

Network
- WDM
- TDM
- CDMA
- ROF

Sub-system
- transmitter
- repeater
- format conv.

Device
- laser diode
- modulator
- detector
- wavelength conv.

COMMUNICATION BARRIERS
Purpose of our IDER unit

Network
- WDM
- TDM
- CDMA
- ROF

Sub-system
- transmitter
- repeater
- format conv.

Device
- laser diode
- modulator
- detector
- wavelength conv.

Optical communication

Break the barriers

upward
possible function performance limit

downward
specifications

Development of advanced photonic devices and sub-systems optimized on universal point of view.
Members of our IDER unit

<table>
<thead>
<tr>
<th>Name</th>
<th>Research Area</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujimura</td>
<td>LiNbO$_3$ waveguide devices</td>
<td>Suhara</td>
</tr>
<tr>
<td>Maruta</td>
<td>SOA signal processing</td>
<td>Kitayama</td>
</tr>
<tr>
<td>Miyoshi</td>
<td>Optical A/D conv. in fiber</td>
<td></td>
</tr>
<tr>
<td>Faisal Suresh</td>
<td>Transmission of optical signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mod. format conv. using SOA</td>
<td></td>
</tr>
<tr>
<td>Matsumoto</td>
<td>Fiber signal processor</td>
<td>Inoue</td>
</tr>
<tr>
<td>Higashino</td>
<td>Radio-optic signal processing</td>
<td></td>
</tr>
<tr>
<td>Tsukamoto</td>
<td>Remote localized antenna system</td>
<td>Komaki</td>
</tr>
<tr>
<td>Morioaka</td>
<td>Radio network</td>
<td></td>
</tr>
</tbody>
</table>
Research activities of our IDER unit

LiNbO$_3$ waveguide difference frequency generation device

Nonlinear polarization:

\[P^{\omega_3} \propto d E^{\omega_1} E^{\omega_2} \]

- potential of high efficiency
- broad bandwidth for signal
- low noise
- conversion of multiple wavelength signal
- compact
- transparent

Application for future dense wavelength division multiplexing optical network
DFG wavelength conversion experiments

Optical system

Spectrum of output waves ($P_2=12mW$)

0dB conversion is feasible for Pump power of ~100mW.
All optical modulation format conversion using SOA

NRZ-OOK → RZ-PSK

SOA replacement with LiNbO₃ waveguide device?
Active research works in each sub-group
Information exchange at regular meeting
Organization of various meetings

2nd global seminar
17:30-18:30, Feb.2nd
“Quasi-phasematched nonlinear-optic devices for various application”
Prof. Martin M. Fejer
(Stanford Univ.)